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ABSTRACT

Three reasons many potential users argue against using
expert systems for solving problems are (1) because of the
relatively high cost of specialized LISP Machines and the large
expert system shells written for them; (2) because some expert
systems are used for jobs that the average professional could do
with a relatively short literature search, a few hours of reading,
and a few calculations; and (3) because some classical “crisp”
ruie-based expert systems are limited by their inflexible
representation of human decision making, which is sometimes
needed in problem solving. This paper demonstrates how a

s



small, but useful expert system can be written with inexpensive
shells that will run on inexpensive personal computers.

Rule-based expert assistants have been developed to help
petroleum engineers screen possible enhanced oil recovery
(EOR) candidate processes. Though the final candidate process
is selected on the basis of an economic evaluation, the expert
assistant greatly reduces the amount of work involved. Rather
than having to do exhaustive economic calculations for all
possible processes, the work is reduced to an economic
comparison between two ar three candidates.

This manuscript describes how a classical expert system is
used to solve some sample EOR screening problems. The
expert system approach is compared with standard hand
calcuiations that were performed using various graphs and
charts. The manuscript also shows the advantages of the expert
system method, soives several EQR screening problems using
both the crisp expert system and the more flexible “fuzzy” expert
system, and compares the two approaches.

l. INTRODUCTION

Reasons for studying enhanced oil recovery (EOR)
techniques are summarized in a 1986 paper by Stosur (1). When
his paper was published, only 27% of all the oil discovered in the
United States had been produced. Under current economic
conditions, only about 6% more will be produced using existing
technology. The remaining 67% is a target for EOR. Currently,
about 6% of our daily oil production comes from EOR. Even in
these times of reduced concern of an energy crisis, these
numbers indicate that the study of EOR processes can be
rewarding because of the potentially high payoffs.

Because, in general, EOR processes are expensive, it is
necessary for engineers to pick the best recovery method for the
reservoir in question to optimize profits or to make any profits at
all. The screening methods are expensive and typically involve
many steps, one of which is to consult the technical screening
guide; this screening step is the subject of this paper. Screening
guides consist of tables or charts that list the rules of thumb for
picking a proper EOR technique as a function of reservoir and
crude oil properties. Once a candidate EOR techniques is
determined, further laboratory flow studies are often required.
Data obtained from these studies are then used to demonstrate



the viability of the selected technique. Throughout the screening
process, economic evaluations are carried out .

In this paper, we present two expert systems for screening
of EOR processes. In the first, we developed a crisp, rule-based
assistant, which replaces the previousty published screening
guides. It provides essentially the same information as the table
and graph method, but is more comprehensive and easier to use
than the screening guides. The second, fuzzy expert assistant
was then developed to eliminate some of the weaknesses
observed in the first expert system. At the end of the test
session, both of these expert assistants provide users with a
ranked list of potential techniques. This is difficult to do using the
tables. With both expert systems, the user must enter oil gravity,
viscosity, composition, formation salinity, type, oil saturation,
thickness, permeability, depth, temperature, and porosity.
Although the final choice of technique will be based upon
economics, the first screening step is quite important because
the screening process is expensive and because of the absolute
necessity of choosing the most economically optimum EOR
technique.

Il. THE EOR SCREENING PROBLEM

For this study, EOR is defined as any technique that
increases production beyond water flooding or gas recycling.
This usually involves the injection of an EOR fluid. Both of the
expert systems discussed here are rule based and both rely
mainly on the work of Taber and Martin (2) and Goodlet et al.
(3,4) for their rules. :

EOR techniques can be divided into four general categories:
thermal, gas injection, chemical flooding, and microbial. Thermal
techniques are then subdivided into in situ combustion and
steam flooding, which require reservoirs with fairly high
permeability. Steam flooding has, traditionaily, been the most
used EOR method. It was previously applied only to relatively
shallow reservoirs containing viscous oils. In this application,
screening criteria are changing because the improved equipment
allows economic operations on deeper formations. New studies
show that, in addition to their effect on viscosity and density,
steam temperatures also affect other reservoir rock and fluid
properties. Thus, reservoirs previously not considered as
candidates for steam flooding are being reevaluated. The expert
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system format is a good one to use here because we can easily
change the program as the knowledge of a technology changes.
Gas injection techniques, however, are at the opposite extreme
from steam flooding. They are divided into hydrocarbon,
nitrogen and flue gas, and carbon dioxide. These techniques
tend to work best in deep reservoirs containing light oils.
Chemical flooding techniques are divided into polymer,
surfactant-polymer, and alkaline recovery techniques. Microbial
techniques are new, and primarily experimental, at this time. )
The microbial category is not subdivided. Figure 1 shows all four
of these categories and their associated EOR methods as the
search tree for both expert assistants.

We often hear the comment, “We have excellent papers on
this subject with graphs and tables and information to heip us
soive the problem. Why do we need an expert system”? Our
response is that an expert system is not absolutely necessary,
but the problem can be solved more quickly, and often better,
with the expert system. Table |, taken directly from Ref. 2, is a
matrix of eight EOR techniques and nine EOR criteria.

Theoretically, if the values of the EOR criteria for the
reservoir in question are known, engineers can pick some
candidate processes from Table |, even without having much

CHEMICAL GAS
) G

HYDRO- IN-SITU
CARBON COMBUSTION
SURFACTANT/ NITROGEN STEAM
POLYMER & FLUE GAS FLOODING
CARBON
DIOXIDE

Fig. 1. Search tree for the expert assistants.
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knowledge about EOR. The following simple examples show
some of the problems with this argument. For Example 1, the
following EOR criteria are used with Table |:

Exampie 1

} Gravity = 18 degrees AP

) Viscosity = 500 ¢p

) Compeosition = high percent of C4— C7
) Oil saturation = 50%

) Formation type = sandstone

) Payzone thickness = 35 ft

) Average permeability = 1000 md.

) Well depth = 2000 ft

(9) Temperature = 110°F.

If we search the table, starting at the top, and move left-to-
right before moving down a row, we are using backward-chaining
or a goal-driven method. That is, we first assume a solution (e.g.
hydrocarbon gas-injection), then check the data either to verify
or to disprove that assumption. On the other hand, a data-driven
or forward-chaining approach would begin the search in the
upper left-hand corner of the table and would move down, row
by row, to the bottom before moving to the next column. That is,
the search would start with the datum value for the oil gravity
and would check that value against every EOR method before
moving on to the other data. In this example, we use backward-
chaining to find that steamfiooding is the only good method to
use for this example. The results of this search are shown in
Fig. 2. In situ combustion techniques might also work. In Table 1
the meaning of the statement “greater than 150°F preferred” for
the reservoir temperature is not perfectly clear. This is one
example of how fuzzy logic can be useful, but we will discuss
fuzzy logic further in a later paragraph.

The preceding situation, is not ideal because there is only
one candidate for the next screening step, and this candidate
could be eliminated, for other reasons, in a later screening step;
then there would be no candidate recovery methods for this
case. Having a property that is not recommended for EOR is
certainly legitimate, but we shouldn’t eliminate the possibility of
EOR because of too little knowledge. By changing the previous
example just a little, we can have the opposite problem, as

(1
2
(3
(4
(5
(6
(7
(8
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shown in the Example 2, whiéh has the following vaiues for the
EOR criteria:

Example 2

(1) Gravity = 35 AP

(2) Viscosity =5 ¢p

(3) Composition = high percent of C — C_and some
organic acids T

(4) Oil saturation = 50%

(5) Formation type = sandstone

(6) Payzone thickness = 10 ft

(7) Average permeability = 1000 md.

(8) Well depth = 5000 ft

(9) Temperature = 150°F.

By searching Table 1, again with a backward-chaining
technique, we obtain the results shown in Fig. 3. This time only
the steamflooding EOR method has been eliminated. This leads
us to the second step with, possibly, too many candidates.

This is not a criticism of Ref. 2 or of tables like Table I. In
fact, for every case like those in the examples above, there are
several cases that will fall in between these extremes. This is
merely an effort to point out that in order to do a good first
screening step, we will often need more information than is
available in these tables. Much of this needed information is
available in Refs. 2—4. References 3 and 4 include a tables
similar to Table |. Table {l contains all of the material from Table
I, as well as some of the information from the table in Ref. 4,
including the microbial drive EOR method. The additional
information improves the results of our search, but is still
insufficient. We need information that will teil us what the impact
of a reservoir temperature of 110°F will be when a temperature
of greater than 150°F is preferred. We also need information that
will help us rank two or more methods when the methods fall
within the acceptable range. In other words we need a ranked
list of methods. A nonexpert can obtain a ranked list by reading
the papers, and, possibly, by undertaking a short literature
search, in addition to using Table | or Il. But the time required for
this screening step may be far greater than the few minutes
required for searching the tables. If the exercise has to be
repeated several times or by several different nonexperts, then a
small PC-based expert system can be easily justified for the job.
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Figures 4—14 demonstrate the basis of a scoring system for
the various EOR criteria and for the EOR methods used in a first
attempt to solve this problem using a crisp rule-based expert
system [see reference (5)]. Figures 5, 11, and 12 were taken
from Ref. 2 and modified. The others were created by studying
Ref. 2 through 4 and 6 through 8. Figures 4~14 are bar graphs
showing the relative influence each EQOR criterion on each
EOR method. The scoring system is empirical and was designed
to add some judgement or expertise to the expert system. A
great deal of work went into developing this scoring system.

0 2!0 40 BIO 8|0 100

Hydrocarbon Miscible poor good preferred

Nitrogen & Flue Gas poor * prefarred

Carbon Dioxide possible* | fair good

Surfactant/Polymer poor preferred

Polymer Flooding poor preferred

Alkaline Flooding poor"’l preferred I fair

In sity Combustion fair | pref. fair I poor

Steam Flooding fair | pref. poor

Microbial Drive poor I ) good

* Minimum praferred, 24 for flue gas and 35 for nitrogen,
" Possible imMiscible gas displacement.
** No grganic acids are present at this gravity.

Fig. 4. Oil gravity screening data (°AP!).

0.1 1.0 1? 1100 1 0100 1 0,?00 100,000
Hydrocarbon Miscible | _pref. | good | fair | poor
Nitrogen & Flue Gas poor I fair | poor
Carbon Dioxide pref. | good | fair poor
Surfactant/Polymer |  good | fair poor not feasible
Polymer Flooding far | preferred poorl not feasible
Alkaline Flooding good | fair | poor | notfeasible
In situ Combustion paar ] good | not feasible
Steam Flooding poor | fair | good | tair
Microbial Drive unknown

Fig. 5. Qil viscosity screening data (cp).



High % High % High % Organic Asphaltic

Cz-C7 Cy-C7 Cs5—-Cia Acids Components
Hydrocarbon Miscible | preferred good fair NC NC
Nitrogen & Flue Gas good preferred fair NC NC
Carbon Dioxide fair fair preferred NC NC
Surfactant/Polymer fair fair preferred NC NC
Polymer Flooding . NC NC NC NC NC
Alkaline Flooding NC NC NC preferred NC
In situ Combustion NC NG NC NC preferred
Steam Flooding NC NC NC NC NC
Microbial Drive NC NC NC NC NC

NC = not critical

Fig. 6. Qil composition screening data.

10 1?0 1.?00 10,?00 ’ 100.:300 1,000,000
Hydrocarbon Miscible not critical
Nitrogen & Flue Gas not critical
Carbon Dioxide not critical
Surfactant/Polymer preferred G fair poor
Polymer Ficoding preferred G fair poor
Alkaline Flooding preferred | good | fair poor
i situ Combustion not criticai
Steam Fiooding not critical
Microbia) Drive preterred I G l fair ’ poor
G = good
Fig. 7. Formation salinity screening data (ppm)
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Hydrocarbon Miscible
Nitragen & Flue Gas
Carbon Dioxide
Surfactant/Polymer
Polymer Flooding
Alkaline Flooding

In sitv Combustion
Steam Flooding
Microbiat Drive

0 210 4!0 SP 80 100
pocr good preferred
poor good
poor good
poor preferred I possible

poor | possible] fair I preferred”
above waterfiood residual
paor fair | good preferred*
poor fair| good preferred”
not critical

*Preferred status is based on the starting residual oil
saturations of successfully producing wells as

decumented by Ref. 8.

Fig. 8. Oil saturation screening data (% PV).

Hydrocarbon Miscible
Nitrogen & Flue Gas
Carbon Dioxide
Surfactant/Polymer
Polymer Flooding
Alkaline Fiooding

in sitt Combustion
Steam Flooding
Microbial Drive

s || i e s
good good poor good poor
good good poor good poor
good good poor good poor
preferred preferred poor good poar
preferred preferred good fair poor
poor preferred fair not feasibie | not feasible
good good geod good fair
good good fair good fair
good good good good poor

Fig. 9. Formation type screening data.
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0 25 5|0 715 810 >100
Hydrocarbon Miscible | preferred thin unless dipping
Nitrogen & Flue Gas | preferred thin unless dipping X
Carbon Dioxide preferred thin unless dipping
Surfactant/Polymer  (poor l preferred l good
Polymer Flooding not critical
Alkaline Flooding not critical
in situ Combustion fairl good I fair
Steam Flooding poor [ fair l preferred | good
Microbial Drive not critical
Fig. 10. Net thickness screening data (feet).
0.1 150 TIO 100 1,(;00 10,000
Hydrocarbon Miscible preferred good

Nitrogen & Flue Gas

not critical if uniform

Carbon Dioxide high enough for good injection rates
Surfactant/Polymer poar fair prefarred
Polymer Flooding poor possible| fair prefarred | fair
Alkatine Flooding poor fair pretferred

In situ Combustion poor l fair | preferred
Steam Flooding poor | fair | preferred
Microbial Drive poor | good

Fig.

11. Permeability screening data (md).
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0 2,000 4,?00 6,0100 a,oioo 10,000

Hydrocarbon Miscible poor fair good
Nitrogen & Flue Gas poor fair preferred
Carbon Dioxide poor  |possiole preferred
Surfactant/Polymer ' preferred paor

Polymer Flooding preferred poor
Alkaline Flooding preferred poor
in sity Combustion |N|P good
Steam Flooding P| preferred possible poor

Microbial Drive poor | poor

P = possible N = not feasibie
Fig. 12. Well-depth screening data (feet).
0 1(1)0 2?0 3(1)0 4(!)0 500

Hydrocarbon Miscible not critical

Nitrogen & Flue Gas good | better

Carbon Dioxide not critical

Surfactant/Polymer preferred’ good ] poor not feasibie
Polymer Flooding - preferred good | poor not feasible
Alkaline Flooding good fair poor

In situ Combustion poor good | preferred

Steam Flooding not critical

Microbial Drive good ] not feasible

Fig. 13. Formation temperature screening data (°F).
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Q 1 it‘.) 210 310 410 50
Hydrocarbon Miscible | poor net critical
Nitrogen & Flue Gas | poor not critical
Carbon Dioxide poor not critical
Surfactant/Polymer poor tair good
Polymer Flaoding poor fair good] preferred
Alkaline Flooding poor possible preferred
In situ Combustion poor possible |good | preferred
Steam Flooding poor possible good l preferred
Microbial Drive poor unknown

Fig. 14. Formation porosity screening data (%).

The system is a significant improvement over the tables because
each category is broken into many increments or sets. However,
this system is still not adequate because the sets are crisp and
they have a membership of either 0 or 1. This works fine for
many problems but not for others. Look, for example, at Fig. 13.
The influence of the formation temperature on the microbial drive
method is tremendous. With a change of one degree, the choice
can go from “Good” to “Not Feasible.” This is a change of 60
points. Although there is a temperature above which the bugs
die, the demarcation is not that sharp. The crisp scoring system
is based on the key words in Figs. 4-14, and works like this:

Not feasible -50 Fair 6
Very poor -20 Good 10
Poor 0 Not critical 12
Possible 4 Preferred 15

Note that “Not Critical” is a very good situation to have.

For the microbial drive method, the affect of viscosity, and,
to a large extent, porosity, is unknown. Until more information is
obtained, they are assigned a grade of 6 for an “Unknown,”
which is the same score as a “Fair.”

For an example of the scoring system, turn to Fig. 5 and
consider an oil with a viscosity of about 500 centipoise. The
hydrocarbon gas injection, surfactant-polymer, and alkaline
chemical flood techniques are all “Poor,” with scores of zero.

16
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The other two gas injection techniques, nitrogen and flue gas
and carbon dioxide, are both “Fair,” with scores of 6. The
polymer flooding technique cannot be used with a viscosity this
high, so it gets a score of —=50. Each of the thermal techniques is
“Good,” and each gets a score of 10. The microbial drive method
has an “Unknown,” so it gets a score of 6.

Some EOR criteria carry more weight than others, and, in .
some cases, a given criteria may affect one method more than
another, which explains why the maximum and minimum scores
for each method vary within a given criteria (see Fig. 4). The
variation in oil gravity allows the score of the hydrocarbon
miscible gas injection method to range from “Poor” to
“Preferred,” a point spread of 0 to 15. The same gravity variation
allows the score of the carbon dioxide gas injection method to
range from “Possible” to “Good,” a point spread of 4 to 10. This
indicates that oil gravity has a larger influence on the
hydrocarbon miscible method than on the carbon dioxide
method. Much of the information in Figs. 4-14 is based on
experience and judgement, and it is influenced by the study of
the more than 200 EOR projects listed in Ref. 8. The scoring
system used in either expert system can easily be changed by
someone with different experience or with new information.

Although scoring system described does quite well in most
cases, there are some notable exceptions. These are described
in the next two examples. Example 3 has the following values for
the EOR criteria for two similar scenarios:

Example 3 - Scenario One

(1) Gravity = 23 degrees API

(2) Viscosity =30 cp

(3) Composition = high percent C5 - 012
(4) Salinity = 101,000 ppm

(5) Oil saturation = 29%

(6) Formation type = sandstone (homogeneous)
(7} Payzone thickness = 26 ft

(8) Average permeability = 24 md

(9) Well depth = 1999 ft

(10) Temperature = 91°F

(11) Porosity = 19%



Scenario Two

(1)  Gravity = 24 degrees API

) Viscosity = 22 ¢cp

)  Composition = high percent of C C

) Salinity = 99,000 ppm

) Qil Saturation = 31%

)  Formation type = sandstone (homogeneous)
)}  Payzone thickness = 24 ft

)  Average permeability = 26 md

}  Well depth = 2001 ft
0) Temperature = 89°F
1) Porosity = 21%

The differences between these two scenarios are hardly
measurable. Yet The crisp expert system gives them following
rankmgs and raw scores:

Scenario One (Rankings)

1- Polymer flooding 102 points
2- Alkaline flooding 97 points
3- In situ combustion 93 points
4- Steam flooding 92 points
5-(tie) Microbial drive 88 points
6-(tie) Surfactant/polymer 88 points
7- Carbon dioxide 85 points
8- Hydrocarbon miscible 77 points
9- Nitrogen and flue gas 72 points
Scenario Two (Rankings)
1- Surfactant/polymer 142 points
2- Polymer flooding 136 points
3- Alkaline flooding 127 points
4- Carbon dioxide 116 points
5- Nitrogen and flue gas 114 points
6- Hydrocarbon miscible 104 points
7- Microbial drive 94 points
8- Steam flooding 83 points

9- In situ combustion 80 points

18



As you can see, the rankings of these scenarios are
completely different. The scores for the second scenario, except
for in situ combustion and steam flooding, are much higher than
those for the first scenario. {The relevance of the magnitude of
these scores is discussed at the end of this section.) A
verification of these scores and the reason for the differences

are shown in Figs. 4-14. These figures show that the scores for

many of the EOR methods fall on one side of a crisp boundary in
the first scenario and on the other side in the second scenario.
The differences are increased because this occurs several times
for each method as the expert system searches through the
EOR criteria. This exampie is a worst case. |t was set up so that
the differences in scores would propagate, rather than cancel,
from one criteria to another. But it is realistic in that most
measurement techniques are not accurate enough to determine
which side of a crisp boundary the data should really be on. The
problem is exacerbated by the fact that a small change in the
state of an EOR criterion can dramatically influence some EOR
methods. For example, Fig. 4 shows that a small change in the
AP| gravity of an oil can change the potential for surfactant/
polymer and poiymer flooding from “Poor” to “Preferred.” Another
example is the affect of viscosity on in situ combustion (see

Fig. 5). A sharp change occurs, from “Poor” to “Good,” as the
viscosity increases. Another sharp change occurs, from “Good”
to “Not Feasible,” as the viscosity increases further. Even though
these changes are relatively sharp, they are not as crisp as
those shown in Figs. 4-14 or as used as those in the crisp
expert system.

The scenarios in Example 4 demonstrate yet another related
problem. If we add information about salinity and porosity to
Example 1 so that we can use all of Figs. 4—14, and if we change
the viscosity and the gravity and composition to be consistent
with the heavier oil viscosity, we can demonstrate the in situ
combustion and surfactant/polymer viscosity problems and their
related problems.

19
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Example 4 — Scenario One
Gravity = 15 degrees AP!

)
(2)  Viscosity = 999 cp
(3) Composition = high percent of C C
(4)  Salinity = 50,000 ppm
(5)  Qil saturation = 50%
)

Formation type = sandstone (homogeneous)
(7)  Payzone thickness = 35 ft

(8) Average permeability = 1000 md

(9) Well depth = 2000 ft

(10) Temperature = 110°F

(11) Porosity = 28%

Scenario Two

(1)  Gravity = 15 degrees API

(2)  Viscosity = 1001 cp

(3) Composition = high percent of C C
(4)  Salinity = 50,000 ppm

(5)  Qil saturation = 50%

(6) Formation type = sandstone (homogeneous)
(7) Payzone thickness = 35 ft

(8) Average permeability = 1000 md

(9)  Well depth = 2000 ft

(10) Temperature = 110°F

(11) Porosity = 28%

The difference between these two scenarios is only
2 centipoise or 0.2% in viscosity. If we list the rankings of the top
four methods computed from Scenario One, we find in situ
combustion ranked second and surfactant/polymer ranked fourth.

Scenario One (Rankings)

1- Steam flooding 132 points
2- In situ combustion 125 points
3- Alkaline flooding 117 points
4- Surfactant/polymer 116 points
Scenario Two {(Rankings)
1- Steam flooding 132 points
*- In situ combustion 65 points (Not Feasible)
2- Alkaline flooding 117 points

*

- Surfactant/polymer 66 points (Not Feasible)



With only the small change in viscosity (2 centipoise), the in situ
combustion and surfactant/polymer techniques drop from the
second and fourth ranked methods to ones that are Not
Feasible. Even though a rather sharp drop in feasibility occurs, it
isn't that sharp if you consider the viscosity increase.

Exampies Three and Four demonstrate the kinds of
problems experienced by some expert systems decision
boundaries. Aithough there are several ways to reduce these
problems, the problem of screening of EOR methods is ideally
suited to fuzzy logic. Fuzzy logic is like human logic at those
boundaries. Instead of deciding which side to be on, we must
weight the average of each side. This makes the transition from
one side of the boundary to the other much smoother. The fuzzy
logic approach is discussed in the next section.

An important task of the expert system is to give the user
meaningful advice about the individual EOR methods on the
basis of the raw scores computed by the program. For these
expert systems, the raw scores were normalized on the basis of
a maximum possible best score of 100% for the best possible
process, which is steam flooding. That is, if all methods were to
receive the best possible score, steam flooding would get the
highest score, with 148 points. It also has the largest number of
“Preferred” ratings in Figs. 4—14. The other EOR methods
(except the microbial drive) are all rated quite close to the steam
flooding method. The raw score of 148 corresponds to 100%. All
raw scores are divided by 148 to produce a normalized score
relative to the best score possible.

At the end of a session, the scores are tallied, providing
the user with a ranked list of candidates to take to the next
screening step and an idea of how good the candidates are
relative to the best possibie score. So far in these
examples,both expert systems have given realistic results,
except in those cases where the fuzzy decision was
important. These expert systems have been run using much
of the information given in Ref. 8 for actual EOR projects. In
about 60% of the cases run, the method ranked highest by
the expert system was the method that was actually selected
for and used in that project. In most of the other cases, the
actual method used was ranked in the top three by the
expert system. This is not too unusual because the actual
test data influenced the scores used by the expert system.
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Expert systems are often built by comparing the results of
the expert system with the results given by the experts, then
maodifying the system until it is as good as the experts. This
approach gives us confidence in the accuracy of the results
predicted by the expert systems.

HI. EXPERT SYSTEMS AND FUZZY LOGIC

Good texts on artificial intelligence and expert systems
{9,10) point out that most reatl expert systems have to deal with
some kind of uncertainty. On the first (crisp) expert system,
considerable effort was expended examining the literature and
working with raw data to reduce the uncertainty. If, for example,
an EOR method gets a “Good” rating for an EOR criterion, that
rating is assumed with 100% confidence, to be worth 10 points.
Considerable effort went into defining the boundaries of the
various ratings within each EOR criteria. For the crisp expert
system, each rating biock is considered to be a crisp set, that is,
either the EOR method gets a particular rating or it doesn't. For
instance (see Fig. 4), if the API gravity of the oil is greater than
40, the hydrocarbon miscible method gets a “Preferred” rating. If
the gravity is not greater than 40, the method gets some other
rating. This works fine as long as the gravity is not near the
boundary (in this case 40). But if it is, then some uncertainty
arises. For example, what if the gravity is 27, right about the
boundary between “Good” and “Poor,” for the hydrocarbon
miscible method? Should the score be 0 for “Poor” or 10 for
“Good"? The crisp expert system makes a decision and assigns
a membership, to either “Poor” or “Good,” for the hydrocarbon
miscible gravity, and the score for the hydrocarbon miscible
method is incremented appropriately.

The fuzzy expert system reduces the uncertainty caused by
set boundaries by replacing the crisp sets with fuzzy sets. Fuzzy
logic is conventional logic, or inference rules, that is applied to
fuzzy sets rather than crisp sets. Fuzzy sets are represented by
membership functions. Unlike the crisp sets, the value for an
EOR criterion for an EOR method can have membership in
more than one set. Figures 15-23 are the membership functions,
or fuzzy sets, that correspond to the crisp sets in Figs. 4—14.
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There are no corresponding fuzzy sets for Fig. 6 (oil composi-
tion), or Fig. 9 (formation type). These two EOR criteria
remained crisp for this study. Note that some of the abscissae of
the fuzzy sets are different from those shown for the correspond-
ing crisp sets. In these cases, simple transformations were used
on the EOR criteria variable to better fit them to the fuzzy expert
system shell.

As can be seen by observing Figs. 15-23, each of the
values for each of the EOR criteria, for each EOR method has a
membership in more than one fuzzy set. If we continue our
example with the AP! gravity and observe Fig. 15a for the
hydrocarbon miscible method, we see that for a gravity of 27 the
hydrocarbon miscible method has a membership of about 0.3 in
“‘Poor” and a membership of about 0.3 in “Good”. These
memberships are combined to produce a crisp score. QOur
example demonstrates how memberships are combined to
produce a crisp score.

Since a gravity of 27 for the hydrocarbon miscible method
has membership in two sets, two rules are fired, each with a
“strength” relative to the set membership value (in this case 0.3
for each ruie). The two rules are:

1. If gravity _Hydrocarbon_Miscible is Poor
Then Score = Poor

2. If gravity_Hydrocarbon_Miscibie is Good
Then Score = Gooed.

Figure 24 shows the membership functions for the output or
the Score. From the rules above we can see that the Score
shouid be part “Good” and part “Poor,” resuiting in a crisp value
somewhere between 0 and 10. There are several methods for
combining memberships. The one used by our fuzzy expert
system is called the Max-Min Inference Method. This method
combines the “Good” and “Poor” Scores by clipping the outpout
membership function triangles at the height of the membership
function value. (In this case the height is 0.3 for both “Good” and
“Poor”.) The crisp value for the Score is the centroid of the
combination of these two truncated triangles. In our case it is the
integer value 4. Figure 25 is a composite drawing of a portion of
Fig. 15a and a portion of Fig. 24. It shows how the input and
output membership functions are connected by the rules and
how the crisp output Score is computed based on the number of
rules fired and the value of the membership function for the rule
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Fig. 25. Demonstration of the max-min interference method.

premises. (e.g., in this case the membership function value for
each premise for each rule was 0.3.) )

V. HOW THE EXPERT SYSTEMS WORK

If an engineer were solving the EOR screening probiem by
hand, using the backward-chaining or goal-driven method, he
would first pick a goal (for example, the hydrocarbon gas
injection method from the left-hand side of Tabies | and Hl). The
engineer would then pick the subgoals that would have to be met
before the original goal could be satisfied (for example, the gas
injection category.) This process of picking subgoals would
continue as long as necessary, but in our case, it would stop
here. The engineer would ask only those questions necessary to
determine whether gas injection would be a feasible category. If
the feasibility of the gas injection category were established, the
engineer would ask only those questions necessary to determine
whether the hydrocarbon method would be feasibie. If not,
another goal would be picked. If yes, the problem would be
solved, unless more than one solution were desired, in which
case, another goal would be picked and the process continued.

With the forward-chaining, or data-driven, approach, the
engineer lets the data help search through the search tree (the
system keeps asking questions until it is clear which node to
move to next).

The crisp expert system, the first one assembled, uses
backward-chaining. With this system, the approach is to first
assume that hydrocarbon injection is going to work. In order for
hydrocarbon injection to work, the :ategory of gas injection must
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be applicable. In order for gas injection to be applicable both the
oil property data and the reservoir data shown in Figs. 4-14
must have scores greater than preprogrammed threshold values.

The program begins by trying to verify these subgoals by
asking questions about gravity, viscosity, oil composition, etc. It
continues until a final goal is met or until an assumption is
rejected at some level. When an assumption is rejected, that
branch of the search tree is pruned. The program then moves {o
the next unpruned branch to the right and picks that EOR
process as a goal, then continues until a solution is found. Since
we want a ranked list of candidate EOR methods, the program
searches the tree until all possible solutions are found. When the
search is finished, the solutions are printed, with a score for
each qualifying method.

Figure 26 is a portion of an and/or graph for a portion of the
search space for the crisp version of the expert assistant. It is
called an and/or graph because the branches connected by an
arc are and branches (all of the leaves must be true, and in this
case, must have a preprogrammed minimal score, before the
branch is resolved). The unarced branches are or branches.
They require only a single truth (minimal score) for resolution.

The fuzzy expert system was written next. It uses forward-
chaining and, essentially, an exhaustive search. It starts with the
API gravity of the oil in the reservoir (Fig. 15) and assigns a
score to each EOR method. it then moves on to viscosity
(Fig. 16) and repeats the procedure. The procedure is repeated
until all 11 EOR categories are checked. The fuzzy expert
system actually uses some crisp rules, combined with the fuzzy
rules. Figure 6 shows oil composition screening data. This is
probably an area that would fuzzify very well if enough data were
available. The only data we have are for those compositions
listed. We have no data for composition mixtures. Therefore, the
rules for oil composition remain crisp. Figure 9 shows the
screening data for the reservoir rock formation type. One could
probably force some fuzziness on these EOR criteria if enough
data were available, but it probably is not worth the effort. These
EOR criteria will probably always remain crisp.

Another area where the rules remain crisp is one in which an
EOR criterion offers no options for an EOR method. Figure 7
shows screening data for formation salinity. For five of the nine
EOR methods formation salinity is not critical. This gives rise to
five crisp rules.
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Fig. 26. And/or graph for a portion of the search space for the CLIPS
backward-chaining version of the problem.

The fuzzy expert system was forced to fit the design basis
for the crisp expert system, which is its scoring system. We
believe the fuzzy expert system could be improved by using a
basis that is specifically designed for it. One large difference
between the two expert systems are the tools, or expert system
shells, used. Each system uses a different sheil, as is discussed
in the next section.

V. PROGRAM COMPARISONS AND SUMMARY

The crisp expert system was written with the expert system
shell, CLIPS (11), developed by NASA. CLIPS is a forward-
chaining shell written in the C programming language. It is a very
versatile and flexible shell, which can even be used to write
expert systems in the backward-chaining mode, as was done for
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the crisp expert system (backward-chaining was used because it
is more intuitive and, therefore, easier to prune search trees).
The crisp expert system is a great improvement over the
hand calculation method that utilizes graphs and charts.
Considerable information has been added to the expert system,
as can be seen in Figs. 4-14. A final example of this is the first
example problem in this paper in which two conditions have
been added from Tabie Ii. The salinity is 50,000 ppm and the
porosity is 28%. Using this information with Table 1l one would
get the same solution we obtained in our sample session, as
shown in Fig. 2 and described in the text. This example, again,
shows that the only method that can be used is steam flooding.
The expert assistant, however, produces a ranked list of five
different candidate processes. They are, in order, as follows:

Score

(%)

(1) Steam flooding 89
(2) In situ combustion 85
(3) Alkaline fiooding 76
(4) Polymer flooding 73
(5) Microbial drive 72

The expert system has provided the solutions to the two
problems we had earlier, when using only Table I. It has given
us a ranked list, instead of just one candidate or a large
unranked list of candidates. Methads such as in situ combustion
can be ranked because it can also weigh problems such as
‘What does it mean to have a temperature of 110°F when the
table says greater than 150°F preferred”? and it gives the
method a relative score. This weighting is possible because of
all the additional information provided in Figs. 4-14. As pointed
out earlier, this expert system works very well on most real world
cases. Exampies 3 and 4 point out, however, that there is a
definite potential for serious errors because of the sharp
boundaries of the crisp sets shown in Figs. 4-14.

The fuzzy expert system was written to eliminate this
potential problem and to add some human-like fuzzy reasoning
to the otherwise rigid crisp expert system. This expert system
was written with the Togai Fuzzy C development system (12).
This system does a lot of work for the programmer; it makes it
easy to enter membership functions, such as those shown in



Figs. 15-23, and it computes the necessary centroids, as
demonstrated in Fig. 25. This system shell is harder to use than
CLIPS because the programmer must write a C language
program to drive the Fuzzy C program. This means that the
programmer has to write the search routines and other
peripheral management software that is typically already
supplied with shells like CLIPS. Although this allows more
flexibility, a great deal of time is required to write search routines
with the sophistication of those found in CLIPS. Because it'was
easiest to write, a forward-chaining exhaustive search was used
on this expert system. Still, extensive coding was required.

This expert system does a much better job on problems
such as those discussed in Exampies 3 and 4. in Example 3, the
crisp expert system causes dramatic changes between the two
Scenarios, even though the input data for the two scenarios are
very similar. The results shown in the ranked list above are from
the crisp expert system. The following results are from the fuzzy
expert system.

Scenario One (Rankings)

1- Alkaline flooding 109 points
2- Polymer flooding 107 points
3- Surfactant/polymer 101 points
4- Carbon dioxide 97 points
5- Microbial drive 89 points
6- Hydrocarbon miscible 86 points
7- In situ combustion 83 points
8- Nitrogen and flue gas 82 points
9- Steam flooding 81 points
Scenario Two
1- Alkaline flooding 112 points
2- (tie) Polymer flooding 109 points
3- (tie) Surfactant/polymer 108 points
4- Carbon dioxide 102 points
5- (tie) Microbial drive 89 points
6-(tie) Hydrocarbon miscible 89 points
7-(tie) In situ combustion 87 points

8-(tie) Nitrogen and flue gas 87 points
9- Steam flooding 78 points
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Only small changes occur between Scenarios One and Two
when the fuzzy expert system is used. In fact the only changes
are small changes in the total points awarded. The relative
rankings are not really changed.

Example 3 is intended to be a realistic problem, but it is a
worst case. The overall raw scores or points produced in the
fuzzy version of Example 3 show little increase from Scenario
One to Scenario Two. This means that the predicted viability of.
the EOR methods will not be unduly enhanced by small changes
in the input data by the fuzzy expert system.

In Example 4 (Scenario One) the crisp expert system
ranked in situ combustion as the second best method and
surfactant/polymer as fourth best. In Scenario Two, the only
change in the input data was an increase of 0.2% in the oil
viscosity, hardly a measurable change. This change caused the
in situ combustion and surfactant/polymer methods to be
discarded. They were “Not Feasible.” The fuzzy expert system
keeps /n situ combustion as the second best method and
surfactant/polymer as the fourth best method in both scenarios,
partly because the abscissae shown in Fig. 5 and used in the
crisp expert system were converted to a logarithmic scale and
plotted linearly in Fig. 16. This is how they are used in the
fuzzy expert system. The transformation eguation is as follows:
transformed-viscosity = (integer) (10*log1°(viscosity) +.5). (The
scale shown in Fig. 6 is linear data piotted on a logarithmic
graph.) The transformation itself tends to fuzzify the set
boundaries. The transformation was made because the fuzzy
expert system shell doesn’'t handle very large numbers or long
scales very well. The fuzzy membership functions also help
fuzzify the set boundaries. But when any other output
membership furiction is combined with the “Not Feasible” output
membership function, with its centroid at =50, it's hard to make
the result of the boundary change very gradual. The —50 score
was designed to dramatically reduce the raw score of an EQOR
method that was thought to be “Not Feasible.” This is a good
idea if the criterion value is not near the set boundary. Even
though a change in feasibility may be quite dramatic as the
criterion value changes, it most likely is not a step function.
Complete resolution of this problem will require a littte more
work.
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The fuzzy expert system is much better at solving problems,
such as those in Examples 3 and 4, than the crisp expert system
is. Although these “worst case” problems do not represent the
majority of EOR screening problems, they are real, and some
degree of the crisp set boundary probiem is present in almost
every EOR screening problem. Our crisp expert system works
more like a classical expert system than the fuzzy expert system
does. The crisp system works interactively with the user. it tries -
to prune the search tree and it offers a simple explanation
facility. On the other hand, with the fuzzy expert system, users
enter the data and wait for all of the scores to be computed. If
the users want some explanation, they can request a dump and
watch the progress of the score calculation.

Some of the differences between the two expert systems
occur because fuzzy expert systems are designed to fire all the
rules that apply to the problem, even those that have only a
minor influence on the outcome. A conventional expert system,
like the crisp expert assistant does just the opposite, that is, it
tries to prune the search tree by eliminating any consideration of
rules that have little or no influence on the problem outcome.
Much of the difference between the two systems is a function of
the difference between the two expert system shells used. A
future project should combine the best features of both shells to
produce one very good expert system.

The final issue we will discuss is the development of the
membership functions for the fuzzy sets shown in Figs. 15-24.
Reference (12) states that, “Determining the number, range, and
shape of membership functions to be used for a particular
variable is somewhat of a black art.” It further states that
trapezoids and triangles, such as those shown in Figs. 15-24,
are a good starting point for membership functions. Trapezoids
and triangles served as a starting point for membership functions
for this project. The membership functions in Figs. 15-24 are still
trapezoids and triangles but many of them are different from
those used as the starting points. Some effort was spent
polishing the membership functions and several changes were
made. In many cases the changes made little difference in the
final scores, but in some cases they made a great deal of
difference. Ideally, we would expect the triangular membership
functions to resemble bell-shaped curves and the trapezoids to
resemble S-shaped curves. References (10 and 13—15) suggest



methods for determining better membership functions. Exampie
4 shows that, in at least some cases, there is a need for
improved membership functions. Improving the membership
functions will require taking a harder look at the available data
and will be the subject of another study. The idea of using neural
nets, fuzzy pattern recognition, or genetic algorithms (15) to
“teach” the membership functions to improve their shape is
intriguing and should be considered for a future project.
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